Use this URL to cite or link to this record in EThOS:
Title: Ant colony optimisation : a proposed solution framework for the capacitated facility location problem
Author: Venables, Harry
ISNI:       0000 0004 2703 8367
Awarding Body: University of Sunderland
Current Institution: University of Sunderland
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis is a critical investigation into the development, application and evaluation of ant colony optimisation metaheuristics, with a view to solving a class of capacitated facility location problems. The study is comprised of three phases. The first sets the scene and motivation for research, which includes; key concepts of ant colony optimisation, a review of published academic materials and a research philosophy which provides a justification for a deductive empirical mode of study. This phase reveals that published results for existing facility location metaheuristics are often ambiguous or incomplete and there is no clear evidence of a dominant method. This clearly represents a gap in the current knowledge base and provides a rationale for a study that will contribute to existing knowledge, by determining if ant colony optimisation is a suitable solution technique for solving capacitated facility location problems. The second phase is concerned with the research, development and application of a variety of ant colony optimisation algorithms. Solution methods presented include combinations of approximate and exact techniques. The study identifies a previously untried ant hybrid scheme, which incorporates an exact method within it, as the most promising of techniques that were tested. Also a novel local search initialisation which relies on memory is presented. These hybridisations successfully solve all of the capacitated facility location test problems available in the OR-Library. The third phase of this study conducts an extensive series of run-time analyses, to determine the prowess of the derived ant colony optimisation algorithms against a contemporary cross-entropy technique. This type of analysis for measuring metaheuristic performance for the capacitated facility location problem is not evident within published materials. Analyses of empirical run-time distributions reveal that ant colony optimisation is superior to its contemporary opponent. All three phases of this thesis provide their own individual contributions to existing knowledge bases: the production of a series of run-time distributions will be a valuable resource for future researchers; results demonstrate that hybridisation of metaheuristics with exact solution methods is an area not to be ignored; the hybrid methods employed in this study ten years ago would have been impractical or infeasible; ant colony optimisation is shown to be a very flexible metaheuristic that can easily be adapted to solving mixed integer problems using hybridisation techniques.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Business ; Information Systems