Use this URL to cite or link to this record in EThOS:
Title: Bond strength between mesh reinforcement and concrete at elevated temperatures
Author: Giroldo, Fernanda
ISNI:       0000 0004 2708 7791
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis investigates, using finite element modelling and experimental investigation, the fracture of mesh reinforcement in composite floor slabs at elevated temperatures. The main objective of the research is the study of the bond strength between the welded mesh reinforcement and concrete at elevated temperatures, since this was found to be the principal behaviour that governs the fracture of the reinforcement in a composite floor slab.The experimental programme included steady state and transient pull-out tests carried out at temperatures varying from 20°C to 1000°C. However, unlike previous work, which concentrated on the bond of single bars, rectangular normal concrete prisms were constructed with one longitudinal bar, ensuring a bond length of 200 mm, and one transverse bar welded centrally. As a result, the influence of the weld of the mesh reinforcement in the bond strength between reinforcement and concrete was studied. The bond strength-slip-temperature relationship was obtained for various sized ribbed and plain bars. It was found that the 6, 7 and 8mm diameter ribbed mesh failed by fracture of the longitudinal bar at all temperatures, including ambient temperature. It was shown that the reduction of bond strength of ribbed mesh was similar to the reduction in strength of the bar, which together with the observed modes of failure, lead to the conclusion that ribbed mesh can be assumed to be fully bonded at all temperatures. The 10mm diameter ribbed mesh failed by splitting due to the cover-bar diameter ratio being small. In contrast, all the plain bars failed by fracture of the weld followed by pull-out of the bar. Therefore the correct bond stress-slip relationship should be modelled for smooth bars to accurately predict global structural behaviour.The investigation using finite element modelling utilizes the DIANA program. The incorporation by the author of the bond strength-slip-temperature relationship within the models permits a better prediction of fracture of the reinforcement in composite floor slabs. It has been shown that smooth bars are more beneficial since the bond is broken before fracture of the bar allowing strains to be distributed along the bar. In the case of ribbed bars the bond is such that localised strain will occur in the bar at crack locations leading quickly to fracture of the reinforcement.
Supervisor: Bailey, Colin Sponsor: CAPES
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Bond strength, elevated temperatures, membrane action ; bond-slip curves,