Use this URL to cite or link to this record in EThOS:
Title: Magnetic resonance coronary vessel wall imaging with highly efficient respiratory motion correction
Author: Scott, Andrew David
ISNI:       0000 0004 2705 0235
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
There is a need for a noninvasive imaging technique for use in longitudinal studies of sub-clinical coronary artery disease. Magnetic resonance (MR) can be used to selectively and non-invasively image the coronary wall without the use of ionising radiation. However, high-resolution 3D studies are often time consuming and unreliable, as data acquisition is generally gated to a small window of diaphragm positions around end-expiration which results in inherently poor and variable respiratory efficiency. This thesis describes the development and application of a novel technique (beat-to-beat respiratory motion correction (B2B-RMC)) for correcting respiratory motion in 3D spiral MR coronary imaging. This technique uses motion of the epicardial fat surrounding the artery as a surrogate for the motion of the artery itself and enables retrospective motion correction with respiratory efficiency close to 100%. This thesis first describes an assessment of the performance of B2B-RMC using a purpose built respiratory motion phantom with realistic coronary artery test objects. Subsequently, MR coronary angiography studies in healthy volunteers show that the respiratory efficiency of B2B-RMC far exceeds that of conventional navigator gating, yet the respiratory motion correction is equally effective. The performance and reproducibility of 3D spiral imaging with B2B-RMC for assessment of the coronary artery vessel wall is subsequently compared to that of commonly used 2D navigator gated techniques. The results demonstrate the high performance, reproducibility and reliability of 3D spiral imaging with B2B-RMC when data acquisition is gated to alternate cardiac cycles. Using this technique, a further in-vivo study demonstrates thickening of the coronary vessel wall with age in healthy subjects and these results are shown to be consistent with outward remodelling of the vessel wall. Finally, the performance of B2B-RMC in a variety of coronary vessel wall applications, including in a small cohort of patients with confirmed coronary artery disease, is presented.
Supervisor: Keegan, Jennifer ; Firmin, David Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral