Use this URL to cite or link to this record in EThOS:
Title: Connection robustness for wireless moving networks using transport layer multi-homing
Author: Behbahani, Peyman
ISNI:       0000 0004 2701 3899
Awarding Body: City University
Current Institution: City, University of London
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Given any form of mobility management through wireless communication, one useful enhancement is improving the reliability and robustness of transport-layer connections in a heterogeneous mobile environment. This is particularly true in the case of mobile networks with multiple vertical handovers. In this thesis, issues and challenges in mobility management for mobile terminals in such a scenario are addressed, and a number of techniques to facilitate and improve efficiency and the QoS for such a handover are proposed and investigated. These are initially considered in an end-to-end context and all protocols and changes happened in the middleware of the connection where the network is involved with handover issues and end user transparency is satisfied. This thesis begins by investigating mobility management solutions particularly the transport layer models, also making significant observation pertinent to multi-homing for moving networks in general. A new scheme for transport layer tunnelling based on SCTP is proposed. Consequently a novel protocol to handle seamless network mobility in heterogeneous mobile networks, named nSCTP, is proposed. Efficiency of this protocol in relation to QoS for handover parameters in an end-to-end connection while wired and wireless networks are available is considered. Analytically and experimentally it has been proved that this new scheme can significantly increase the throughput, particularly when the mobile networks roam frequently. The detailed plan for the future improvements and expansion is also provided.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA75 Electronic computers. Computer science