Use this URL to cite or link to this record in EThOS:
Title: Corrosion protection by paint : cathodic disbonding
Author: Bi, Huichao
ISNI:       0000 0004 2703 8295
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This work investigated cathodic disbonding of an unpigmented phenalkamine-cured epoxy coating on mild steel, EC, exposed to 3.5 wt.% NaCl solution. Scanning Acoustic Microscopy (SAM), Scanning Kelvin Probe (SKP), Electrochemical Impedance Spectroscopy (EIS) and optical microscopy have been combined to conduct this study. Several factors affecting the cathodic disbonding process: Film thickness, Cation mobility, Electrolyte concentration, Temperature, Paint composition, Polarisation and Open circuit potential, have been investigated. SAM results show that the disbonding of EC with a linear scribe spreads outwards from the defect with blisters forming at the anodes (as shown in SKP potential maps) within the disbond. The disbonded region does not correspond to complete adhesion loss as verified by peel-testing. Semi-immersion tests show that disbonding under full- and semi-immersion conditions have similar behaviours and both follow parabolic kinetics indicating the disbonding is likely to be controlled by a transport process along the coating/metal interface. An intact epoxy coated mild steel panel coupled with bare mild steel shows that the cathodic reaction beneath the coating obeys Tafel law. A mathematical model simulating cathodic disbonding which produces realistic potential files and shows the oxygen reduction is mostly located near the disbond mouth has been developed.
Supervisor: Sykes, John Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Materials Sciences ; epoxy ; cathodic disbonding ; blister