Use this URL to cite or link to this record in EThOS:
Title: The dual role of astrocytes in myelination
Author: Nash, Besma
ISNI:       0000 0004 2699 8964
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Astrocytes are the most abundant cell within the central nervous system (CNS) and yet despite this, the true extent of their role in health and disease has not been fully elucidated. In the undamaged CNS, they are termed quiescent, where they maintain homeostasis. However, after injury or disease astrocytes become reactive where they are described as a physical and molecular barrier to regeneration. Emerging literature has suggested the existence of an additional phenotype of astrocyte, termed the activated astrocyte. These astrocytes are thought to enhance regeneration by creating a more growth-permissive environment for repair. In addition, it has also been reported that astrocytes may play a role in regulating myelination; however, it is unclear how the phenotype of the astrocytes may affect this process. Therefore, this thesis will focus on the variable phenotypic state of astrocytes and subsequently how this relates to their ability to support myelination. Using an in vitro myelinating culture, where dissociated spinal cord cells were plated on a monolayer of astrocytes, myelination can be followed over time. Since it is hypothesised that astrocytes can affect myelination we used two protocols known to affect the reactive status of the astrocyte, i) activate the astrocytes by treating with ciliary neurotrophic factor (CNTF) or ii) induce a quiescent astrocyte state by plating them on Tenascin C (TnC). It is hypothesised that CNTF changes the activation state of the astrocyte therefore making it more supportive to myelination. The addition of the astrocyte derived factor ciliary neurotrophic factor (CNTF) was shown to enhance myelination. My results demonstrate that CNTF addition does not lead to an increase in oligodendrocyte or microglia cell numbers or an increase in the diameter of the neurites, thus suggesting that this CNTF-induced increase in myelination is mediated via the astrocyte. Conversely, culturing astrocytes on the extracellular matrix molecule Tenascin-C (TnC), a method to make the astrocytes quiescent (Holley et al., 2005), resulted in a reduction in myelination. Astrocytes cultured on TnC were shown have decreased expression of nestin, which is typically a marker for reactivity. A microarray gene study comparing gene expression of the various astrocyte phenotypes identified CXCL10 to be upregulated in astrocytes on TnC. Furthermore, the addition of CXCL10 into the myelination cultures resulted in a decrease in myelination. Conversely, the addition of anti-CXCL10 to myelinating cultures on quiescent astrocytes increased myelination. Taken together, these data indicate that the astrocyte phenotype has considerable influence on myelination; where activated astrocytes support myelination whilst quiescent astrocytes do not. The identification of factors which may modify astrocyte phenotypes could lead to potential therapeutic strategies for CNS pathologies.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: RC Internal medicine