Use this URL to cite or link to this record in EThOS:
Title: An advanced drive system for permanent magnet synchronous motors using field programmable
Author: Jayasoma, Sujitha
ISNI:       0000 0004 2698 2583
Awarding Body: University of East London
Current Institution: University of East London
Date of Award: 2003
Availability of Full Text:
Access from EThOS:
This research is concerned with the evolution of an advanced drive system for use with permanent magnet synchronous motors. The proposed drive system incorporates state-of-the art control strategies with a switching matrix current loop which is a special case of the sliding mode control loop, implemented using field programmable gate array (FPGA) devices. This significantly increases the bandwidth of the current control loop, in comparison with systems using PI current controllers and therefore improves the dynamic performance of the drive system. The hard-wired FPGA implementation of a current control loop greatly reduces the processing and computational burden imposed on the controller. Most importanUy, in contrast to the OSP technology, independent functions may be implemented without the constraint of a shared arithmetic unit. In this research a novel hard-wired algorithm implementation is proposed for advanced control of brushless permanent magnet synchronous motor (PMSM) servo-drives. The PM servomotor control system has been developed as a set of modular subsystems in the form of algorithms, which can be easily interconnected at the top-level. The novel features of the control system have been made possible by the FPGA implementation with the creation of special algorithms and multiple sampling periods. The application under study is the speed and position control of synchronous motor drives. Initially, a conventional proportional and integral (PI) speed controller was implemented to enable comparison of performance to be made with the forced dynamic control (FOC) law emerging during the final stage of the research programme, which takes advantage of the flexibility offered by digital FPGA implementation. This offers high robustness to uncertainties in the dynamics of the driven load and unknown external load torques and yields a prescribed closed-loop dynamic response to reference inputs. The proposed system not only has the prescribed mutual orthogonality between the magnetic flux and stator current vectors, but also the realisation of a chosen form of speed response transient These FOC strategies have not yet been commercially exploited and it is emphasised that the recent advances in FPGA technology render such control methods highly cost effective. It is therefore anticipated that the outcomes of the research work will provide significant benefits in the development of a new generation of high performance and competitive servo drives.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available