Use this URL to cite or link to this record in EThOS:
Title: Analytic Representations of Finite Quantum Systems on a Torus
Author: Jabuni, Muna
ISNI:       0000 0004 2698 5776
Awarding Body: University of Bradford
Current Institution: University of Bradford
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Quantum systems with a finite Hilbert space, where position x and momen- tum p take values in Z(d) (integers modulo d), are studied. An analytic representation of finite quantum systems is considered. Quantum states are represented by analytic functions on a torus. This function has exactly d zeros, which define uniquely the quantum state. The analytic function of a state can be constructed using its zeros. As the system evolves in time, the d zeros follow d paths on the torus. Examples of the paths ³n(t) of the zeros, for various Hamiltonians, are given. In addition, for given paths ³n(t) of the d zeros, the Hamiltonian is calculated. Furthermore, periodic finite quantum systems are considered. Special cases where M of the zeros follow the same path are also studied, and general ideas are demonstrated with several ex- amples. Examples of the path with multiplicity M = 1; 2; 3; 4; 5 are given. It is evidenced within the study that a small perturbation of the initial values of the zeros splits a path with multiplicity M into M different paths.
Supervisor: Vourdas, Apostolos Sponsor: Libyan Cultural Affairs
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Finite quantum systems ; Torus ; Analytic functions ; Representation