Use this URL to cite or link to this record in EThOS:
Title: Stochastic analysis of nonlinear dynamics and feedback control for gene regulatory networks with applications to synthetic biology
Author: Strelkowa, Natalja
ISNI:       0000 0004 2700 1361
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
The focus of the thesis is the investigation of the generalized repressilator model (repressing genes ordered in a ring structure). Using nonlinear bifurcation analysis stable and quasi-stable periodic orbits in this genetic network are characterized and a design for a switchable and controllable genetic oscillator is proposed. The oscillator operates around a quasi-stable periodic orbit using the classical engineering idea of read-out based control. Previous genetic oscillators have been designed around stable periodic orbits, however we explore the possibility of quasi-stable periodic orbit expecting better controllability. The ring topology of the generalized repressilator model has spatio-temporal symmetries that can be understood as propagating perturbations in discrete lattices. Network topology is a universal cross-discipline transferable concept and based on it analytical conditions for the emergence of stable and quasi-stable periodic orbits are derived. Also the length and distribution of quasi-stable oscillations are obtained. The findings suggest that long-lived transient dynamics due to feedback loops can dominate gene network dynamics. Taking the stochastic nature of gene expression into account a master equation for the generalized repressilator is derived. The stochasticity is shown to influence the onset of bifurcations and quality of oscillations. Internal noise is shown to have an overall stabilizing effect on the oscillating transients emerging from the quasi-stable periodic orbits. The insights from the read-out based control scheme for the genetic oscillator lead us to the idea to implement an algorithmic controller, which would direct any genetic circuit to a desired state. The algorithm operates model-free, i.e. in principle it is applicable to any genetic network and the input information is a data matrix of measured time series from the network dynamics. The application areas for readout-based control in genetic networks range from classical tissue engineering to stem cells specification, whenever a quantitatively and temporarily targeted intervention is required.
Supervisor: Barahona, Mauricio Sponsor: Wellcome Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral