Use this URL to cite or link to this record in EThOS:
Title: Flowers through insect eyes : the contribution of pollinator vision to the evolution of flower colour
Author: Arnold, Sarah Elizabeth Joan
ISNI:       0000 0004 2697 0697
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Flowers’ colours are an essential element of their ability to attract visits from pollinators. However, the colours as they appear to human observers can differ substantially from their appearance to insect pollinators, and so it is essential to consider pollinator vision in any study of the ecology of flower colour. In this thesis I describe how I have overseen the development of an online database to provide accurate information on floral spectral reflectance measured without human observational bias. This resource allows a more accurate consideration of flower colours in future studies, and permits investigations of flower colours within and across habitats. Using the records in this database, I analysed flowers from two European habitats for spatial or temporal changes, modelling the colours according to insect visual perception. I discovered that the insect-colour composition of the plant communities does not change either along an altitudinal gradient or throughout the year. These novel and ecologically-relevant analyses contradict previous observational studies, but support the theory of a pollination “market” in which flowers compete for pollinator visitation. I then describe my experimental investigations into the visual capabilities of two pollinators and how this may relate to what colours of flowers they visit. Firstly I study the foraging behaviour of bees under spatially inconsistent illumination and how this impacts on their choice behaviour. I revealed patchy light can have measurable effects on bee foraging behaviour: they intentionally choose familiar over unfamiliar illumination, which may impact on the flowers they visit in complex natural environments. Secondly, I detail the new evidence for a red-sensitive photoreceptor in South African monkey beetles, a major pollinator in a habitat containing many longwavelength- reflecting flowers, which are not classically “attractive” to bees. Throughout this thesis, I explore how pollinator vision has shaped the evolution of flower colours in different contexts.
Supervisor: Not available Sponsor: Biotechnology and Biological Sciences Research Council ; Royal Botanical Gardens Kew
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Biology