Use this URL to cite or link to this record in EThOS:
Title: FDTD modelling of electromagnetic transformation based devices
Author: Argyropoulos, Christos
ISNI:       0000 0004 2693 7467
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
During this PhD study, several finite-difference time-domain (FDTD) methods were developed to numerically investigate coordinate transformation based metamaterial devices. A novel radially-dependent dispersive FDTD algorithm was proposed and applied to simulate electromagnetic cloaking structures. The proposed method can ac- curately model both lossless and lossy cloaks with ideal or reduced parameters. It was demonstrated that perfect “invisibility” from electromagnetic cloaks is only available for lossless metamaterials and within an extremely narrow frequency band. With a few modifications the method is able to simulate general media, such as concentrators and rotation coatings, which are produced by means of coordinate transformations techniques. The limitations of all these devices were thoroughly studied and explo- red. Finally, more useful cloaking structures were proposed, which can operate over a broad frequency spectrum. Several ways to control and manipulate the loss in the electromagnetic cloak ba- sed on transformation electromagnetics were examined. It was found that, by utili- sing inherent electric and magnetic losses of metamaterials, as well as additional lossy materials, perfect wave absorption can be achieved. These new devices demonstrate super-absorptivity over a moderate wideband range, suitable both for microwave and optical applications. Furthermore, a parallel three-dimensional dispersive FDTD method was introdu- ced to model a plasmonic nanolens. The device has its potential in subwavelength imaging at optical frequencies. The finiteness of such a nano-device and its impact on the system dynamic behaviour was numerically exploited. Lastly, a parallel FDTD method was also used to model another interesting coordinate transformation based device, an optical black hole, which can be characterised as an omnidirectional broad- band absorber.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Electronic Engineering