Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.528383
Title: Probabilistic retrieval models : relationships, context-specific application, selection and implementation
Author: Wang, Jun
ISNI:       0000 0004 2693 3888
Awarding Body: Queen Mary, University of London
Current Institution: Queen Mary, University of London
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
Retrieval models are the core components of information retrieval systems, which guide the document and query representations, as well as the document ranking schemes. TF-IDF, binary independence retrieval (BIR) model and language modelling (LM) are three of the most influential contemporary models due to their stability and performance. The BIR model and LM have probabilistic theory as their basis, whereas TF-IDF is viewed as a heuristic model, whose theoretical justification always fascinates researchers. This thesis firstly investigates the parallel derivation of BIR model, LM and Poisson model, wrt event spaces, relevance assumptions and ranking rationales. It establishes a bridge between the BIR model and LM, and derives TF-IDF from the probabilistic framework. Then, the thesis presents the probabilistic logical modelling of the retrieval models. Various ways of how to estimate and aggregate probability, and alternative implementation to nonprobabilistic operator are demonstrated. Typical models have been implemented. The next contribution concerns the usage of of context-specific frequencies, i.e., the frequencies counted based on assorted element types or within different text scopes. The hypothesis is that they can help to rank the elements in structured document retrieval. The thesis applies context-specific frequencies on term weighting schemes in these models, and the outcome is a generalised retrieval model with regard to both element and document ranking. The retrieval models behave differently on the same query set: for some queries, one model performs better, for other queries, another model is superior. Therefore, one idea to improve the overall performance of a retrieval system is to choose for each query the model that is likely to perform the best. This thesis proposes and empirically explores the model selection method according to the correlation of query feature and query performance, which contributes to the methodology of dynamically choosing a model. In summary, this thesis contributes a study of probabilistic models and their relationships, the probabilistic logical modelling of retrieval models, the usage and effect of context-specific frequencies in models, and the selection of retrieval models.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.528383  DOI: Not available
Keywords: Computer Science
Share: