Use this URL to cite or link to this record in EThOS:
Title: Observations of the Sunyaev-Zel'dovich effect using the Cosmic Background Imager 2
Author: Allison, J. R.
ISNI:       0000 0004 2693 7037
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This thesis describes the analysis of pointed thermal Sunyaev-Zel'dovich (SZ) effect data from observations using the Cosmic Background Imager 2 (CBI2). CBI2 is an upgrade to the original Cosmic Background Imager, with antennas that have twice the effective collecting area, and hence provide greater sensitivity on longer baselines. Observations of the thermal SZ effect constrain the line-of-sight integrated gas pressure within clusters of galaxies and, when combined with X-ray data, provide an excellent tool for deriving the physical properties of these large structures. The CBI2 SZ data combine relatively low-resolution with a large field-of-view, and can therefore be used to constrain the gas properties of medium-redshift clusters out to the virial radius. By jointly fitting a suitable analytical model to SZ data and X-ray surface brightness data, it is possible to obtain constraints on the temperature and total mass of the cluster. For the analysis work presented in this thesis I choose to parametrise the gas based upon the known behaviour of the entropy, and the total mass by the Navarro, Frenk and White (NFW) prescription. This model is tested against Hydrodynamic/N-body simulations and is found to reproduce the radial behaviour of key cluster properties. The CBI2 observations presented in this work focus on the REFLEX-DXL clusters, an X-ray luminous sub-sample of the REFLEX survey at z ~ 0.3, which have previously published X-ray surface brightness data. The Bullet Cluster, a significant merger system, is a member of this sample and is presented here as a case study for use of the entropy-based model. The derived total mass and gas mass fraction of this cluster are found to be consistent with results from previous X-ray observations. The derived properties from the REFLEX-DXL sample are used to construct a preliminary set of SZ scaling relations out to the virial radius, and are found to be consistent with the self-similar model for massive clusters.
Supervisor: Jones, M. E. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Physical Sciences ; Physics ; Astrophysics ; cosmology ; radio astronomy ; radio interferometry ; cosmic microwave background ; Sunyaev-Zel'dovich effect ; clusters of galaxies