Use this URL to cite or link to this record in EThOS:
Title: Using geometric algebra to interactively model the geometry of Euclidean and non-Euclidean spaces
Author: Vincent, Hugh
Awarding Body: Middlesex University
Current Institution: Middlesex University
Date of Award: 2007
Availability of Full Text:
Access from EThOS:
Access from Institution:
This research interprets and develops the 'conformal model of space' in a way appropriate for a graphics developer interested in the design of interactive software for exploring 2-dimensional non-Euclidean spaces. The conformal model of space extends the standard projective model – instead of adding just one extra dimension to standard Euclidean space, a second one is added that results in a Minkowski space similar to that of relativistic spacetime. Also, standard matrix algebra is replaced by geometric ( i.e. Clifford) algebra. The key advantage of the conformal model is that both Euclidean and non- Euclidean spaces are accommodated within it. Transformations in conformal space are generated by bivectors which are special elements of the geometric algebra. These induce geometric transformations in the embedded non Euclidean spaces. However, the relationship between the bivector generated transformations of the Minkowski modelling space and the geometric transformations they induce is extremely obscure. This thesis provides new analytical tools for determining the nature of this relationship. Their derivation was motivated by the need to successfully solve key implementation problems relating to navigation and in-scene mouse interaction. The analytic approaches developed not only successfully solved these problems but pointed the way to implementing other unplanned features. These include facilities for dynamically altering on-screen geometry as well as using multiple viewports to allow the user to interact with the same objects embedded in different geometries. These new analytical approaches could be powerful tools for solving future and as yet unforeseen implementation problems.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available