Use this URL to cite or link to this record in EThOS:
Title: A Dempster-Shafer theory inspired logic
Author: Iourinski, Dmitri
ISNI:       0000 0004 2691 4521
Awarding Body: Middlesex University
Current Institution: Middlesex University
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Access from Institution:
Issues of formalising and interpreting epistemic uncertainty have always played a prominent role in Artificial Intelligence. The Dempster-Shafer (DS) theory of partial beliefs is one of the most-well known formalisms to address the partial knowledge. Similarly to the DS theory, which is a generalisation of the classical probability theory, fuzzy logic provides an alternative reasoning apparatus as compared to Boolean logic. Both theories are featured prominently within the Artificial Intelligence domain, but the unified framework accounting for all the aspects of imprecise knowledge is yet to be developed. Fuzzy logic apparatus is often used for reasoning based on vague information, and the beliefs are often processed with the aid of Boolean logic. The situation clearly calls for the development of a logic formalism targeted specifically for the needs of the theory of beliefs. Several frameworks exist based on interpreting epistemic uncertainty through an appropriately defined modal operator. There is an epistemic problem with this kind of frameworks: while addressing uncertain information, they also allow for non-constructive proofs, and in this sense the number of true statements within these frameworks is too large. In this work, it is argued that an inferential apparatus for the theory of beliefs should follow premises of Brouwer's intuitionism. A logic refuting tertium non daturìs constructed by defining a correspondence between the support functions representing beliefs in the DS theory and semantic models based on intuitionistic Kripke models with weighted nodes. Without addional constraints on the semantic models and without modal operators, the constructed logic is equivalent to the minimal intuitionistic logic. A number of possible constraints is considered resulting in additional axioms and making the proposed logic intermediate. Further analysis of the properties of the created framework shows that the approach preserves the Dempster-Shafer belief assignments and thus expresses modality through the belief assignments of the formulae within the developed logic.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available