Use this URL to cite or link to this record in EThOS:
Title: Context-aware access control in ubiquitous computing (CRAAC)
Author: Ahmed, Ali Ahmed Ali
ISNI:       0000 0004 2692 7795
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Ubiquitous computing (UbiComp) envisions a new computing environment, where computing devices and related technology are widespread (i.e. everywhere) and services are provided at anytime. The technology is embedded discreetly in the environment to raise users' awareness. UbiComp environments support the proliferation of heterogeneous devices such as embedded computing devices, personal digital assistants (PDAs), wearable computers, mobile phones, laptops, office desktops (PCs), and hardware sensors. These devices may be interconnected by common networks (e.g. wired, wireless), and may have different levels of capabilities (i.e. computational power, storage, power consumption, etc). They are seamlessly integrated and interoperated to provide smart services (i.e. adaptive services). A UbiComp environment provides smart services to users based on the users' and/or system's current contexts. It provides the services to users unobtrusively and in turn the user's interactions with the environment should be as non-intrusive and as transparent as possible. Access to such smart services and devices must be controlled by an effective access control system that adapts its decisions based on the changes in the surrounding contextual information. This thesis aims at designing an adaptive fine-grained access control solution that seamlessly fits into UbiComp environments. The solution should be flexible in supporting the use of different contextual information and efficient, in terms of access delays, in controlling access to resources with divergent levels of sensitivity. The main contribution of this thesis is the proposal of the Context-Risk-Aware Access Control (CRAAC) model. CRAAC achieves fine-grained access control based upon the risk level in the underlying access environment and/or the sensitivity level of the requested resource object. CRAAC makes new contributions to the access control field, those include 1) introducing the concept of level of assurance based access control, 2) providing a method to convert the contextual attributes values into the corresponding level of assurance, 3) Proposing two methods to aggregate the set of level of assurance into one requester level of assurance, 4) supporting four modes of working each suits a different application context and/or access control requirements, 5) a comprehensive access control architecture that supports the CRAAC four modes of working, and 6) an evaluation of the CRAAC performance at runtime.
Supervisor: Zhang, Ning Sponsor: ral Centre and Educational Bureau ; Cairo University
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Access control, Pervasive computing, Ubiquitous Computing, Risk assessment