Use this URL to cite or link to this record in EThOS:
Title: Analysis and design of metamaterial-inspired microwave structures and antenna applications
Author: Kokkinos, Titos
ISNI:       0000 0004 2690 2694
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
Novel metamaterial and metamaterial-inspired structures and microwave/antenna applications thereof are proposed and studied in this thesis. Motivated by the challenge of extending the applicability of metamaterial structures into practical microwave solutions, the underlying objective of this thesis has been the design of low-cost, easily fabricated and deployable metamaterial-related devices and the development of computational tools for the analysis of those. For this purpose, metamaterials composed of tightly coupled resonators are chosen for the synthesis of artificial transmission lines and enabling antenna applications. Specifically, fully-printed double spiral resonators are employed as modular elements for the design of tightly coupled resonators arrays. After thoroughly investigating the properties of such resonators, they are used for the synthesis of artificial lines in either grounded or non-grounded configurations. In the first case, the supported backward waves are exploited for the design of microstrip-based filtering/diplexing devices and series-fed antenna arrays. In the second case, the effective properties of such structures are employed for the design of a novel class of self-resonant, low-profile folded monopoles, exhibiting low mutual coupling and robust radiating properties. Such monopoles are, in turn, used for the synthesis of different sub-wavelength antenna arrays, such as superdirective arrays. Finally, an in-home periodic FDTD-based computational tool is developed and optimized for the efficient and rigorous analysis of planar, metamaterial-based, high-gain antennas.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Wireless communications ; Electromagnetics ; Microwave technology ; Antennas ; Metamaterials