Use this URL to cite or link to this record in EThOS:
Title: Terrestrial laser scanning of the river environment
Author: Hetherington, David
ISNI:       0000 0004 2685 7627
Awarding Body: University of Salford
Current Institution: University of Salford
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 31 Jul 2023
Access from Institution:
This thesis describes the results of three field studies concerned with the utilisation of terrestrial laser scanning in the river environment, over different spatial scales. Existing research and technical literature has also been reviewed relating to scale, form and process in the river environment, conventional measurement techniques and the general utility and testing of terrestrial laser scanning technology. In physical geography and geomorphology, scales of interest in the river environment can range from very small scales such as an individual grain up to large scales that cover entire floodplains or catchments. Improved measurement and spatial representation of the river environment over all these scales will reduce error and improve confidence in research into river form and process. Terrestrial Laser Scanning (TLS) - sometimes referred to as Terrestrial LiDAR (Light Detection and Ranging) - is an exciting and relatively new measurement technique that is based upon the time-of-flight principles of laser pulses from a static origin. The term "scanning" relates to the way that the laser pulses are systematically deployed and received in an automated fashion over a swath by the main measurement unit. These data are acquired from a terrestrial perspective, which gives the technique an advantage over airborne measurement and terrestrial contact measurement methods. This research's aim is to evaluate the performance of TLS as a tool for measuring and representing the river environment, whilst focusing on three distinct scales of river features - the reach scale, the floodplain/braid plain scale and the grain scale. Overall, TLS has proved itself to be an extremely useful tool for measuring and representing (spatially and temporally) the river environment, whilst focusing on various scales and features. This is especially the case when investigating rivers at the reach and plain scales. If used correctly, it can undoubtedly provide scientists and engineers with the data that they need to increase their knowledge of river environment form and process. The findings of this thesis have many broader implications relating to how TLS should be used and how it fits into the suite of measurement tools that we have at our disposal.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available