Use this URL to cite or link to this record in EThOS:
Title: Spatiotemporal visual analysis of human actions
Author: Oikonomopoulos, Antonios
ISNI:       0000 0004 2688 748X
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
In this dissertation we propose four methods for the recognition of human activities. In all four of them, the representation of the activities is based on spatiotemporal features that are automatically detected at areas where there is a significant amount of independent motion, that is, motion that is due to ongoing activities in the scene. We propose the use of spatiotemporal salient points as features throughout this dissertation. The algorithms presented, however, can be used with any kind of features, as long as the latter are well localized and have a well-defined area of support in space and time. We introduce the utilized spatiotemporal salient points in the first method presented in this dissertation. By extending previous work on spatial saliency, we measure the variations in the information content of pixel neighborhoods both in space and time, and detect the points at the locations and scales for which this information content is locally maximized. In this way, an activity is represented as a collection of spatiotemporal salient points. We propose an iterative linear space-time warping technique in order to align the representations in space and time and propose to use Relevance Vector Machines (RVM) in order to classify each example into an action category. In the second method proposed in this dissertation we propose to enhance the acquired representations of the first method. More specifically, we propose to track each detected point in time, and create representations based on sets of trajectories, where each trajectory expresses how the information engulfed by each salient point evolves over time. In order to deal with imperfect localization of the detected points, we augment the observation model of the tracker with background information, acquired using a fully automatic background estimation algorithm. In this way, the tracker favors solutions that contain a large number of foreground pixels. In addition, we perform experiments where the tracked templates are localized on specific parts of the body, like the hands and the head, and we further augment the tracker’s observation model using a human skin color model. Finally, we use a variant of the Longest Common Subsequence algorithm (LCSS) in order to acquire a similarity measure between the resulting trajectory representations, and RVMs for classification. In the third method that we propose, we assume that neighboring salient points follow a similar motion. This is in contrast to the previous method, where each salient point was tracked independently of its neighbors. More specifically, we propose to extract a novel set of visual descriptors that are based on geometrical properties of three-dimensional piece-wise polynomials. The latter are fitted on the spatiotemporal locations of salient points that fall within local spatiotemporal neighborhoods, and are assumed to follow a similar motion. The extracted descriptors are invariant in translation and scaling in space-time. Coupling the neighborhood dimensions to the scale at which the corresponding spatiotemporal salient points are detected ensures the latter. The descriptors that are extracted across the whole dataset are subsequently clustered in order to create a codebook, which is used in order to represent the overall motion of the subjects within small temporal windows.Finally,we use boosting in order to select the most discriminative of these windows for each class, and RVMs for classification. The fourth and last method addresses the joint problem of localization and recognition of human activities depicted in unsegmented image sequences. Its main contribution is the use of an implicit representation of the spatiotemporal shape of the activity, which relies on the spatiotemporal localization of characteristic ensembles of spatiotemporal features. The latter are localized around automatically detected salient points. Evidence for the spatiotemporal localization of the activity is accumulated in a probabilistic spatiotemporal voting scheme. During training, we use boosting in order to create codebooks of characteristic feature ensembles for each class. Subsequently, we construct class-specific spatiotemporal models, which encode where in space and time each codeword ensemble appears in the training set. During testing, each activated codeword ensemble casts probabilistic votes concerning the spatiotemporal localization of the activity, according to the information stored during training. We use a Mean Shift Mode estimation algorithm in order to extract the most probable hypotheses from each resulting voting space. Each hypothesis corresponds to a spatiotemporal volume which potentially engulfs the activity, and is verified by performing action category classification with an RVM classifier.
Supervisor: Pantic, Maja ; Davison, Andrew Sponsor: Greek State Scholarships Foundation (I.K.Y.)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral