Use this URL to cite or link to this record in EThOS:
Title: A metadata-enhanced framework for high performance visual effects
Author: Cornwall, Jay L. T.
ISNI:       0000 0004 2688 6700
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis is devoted to reducing the interactive latency of image processing computations in visual effects. Film and television graphic artists depend upon low-latency feedback to receive a visual response to changes in effect parameters. We tackle latency with a domain-specific optimising compiler which leverages high-level program metadata to guide key computational and memory hierarchy optimisations. This metadata encodes static and dynamic information about data dependence and patterns of memory access in the algorithms constituting a visual effect – features that are typically difficult to extract through program analysis – and presents it to the compiler in an explicit form. By using domain-specific information as a substitute for program analysis, our compiler is able to target a set of complex source-level optimisations that a vendor compiler does not attempt, before passing the optimised source to the vendor compiler for lower-level optimisation. Three key metadata-supported optimisations are presented. The first is an adaptation of space and schedule optimisation – based upon well-known compositions of the loop fusion and array contraction transformations – to the dynamic working sets and schedules of a runtimeparameterised visual effect. This adaptation sidesteps the costly solution of runtime code generation by specialising static parameters in an offline process and exploiting dynamic metadata to adapt the schedule and contracted working sets at runtime to user-tunable parameters. The second optimisation comprises a set of transformations to generate SIMD ISA-augmented source code. Our approach differs from autovectorisation by using static metadata to identify parallelism, in place of data dependence analysis, and runtime metadata to tune the data layout to user-tunable parameters for optimal aligned memory access. The third optimisation comprises a related set of transformations to generate code for SIMT architectures, such as GPUs. Static dependence metadata is exploited to guide large-scale parallelisation for tens of thousands of in-flight threads. Optimal use of the alignment-sensitive, explicitly managed memory hierarchy is achieved by identifying inter-thread and intra-core data sharing opportunities in memory access metadata. A detailed performance analysis of these optimisations is presented for two industrially developed visual effects. In our evaluation we demonstrate up to 8.1x speed-ups on Intel and AMD multicore CPUs and up to 6.6x speed-ups on NVIDIA GPUs over our best hand-written implementations of these two effects. Programmability is enhanced by automating the generation of SIMD and SIMT implementations from a single programmer-managed scalar representation.
Supervisor: Kelly, Paul Sponsor: EPSRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral