Use this URL to cite or link to this record in EThOS:
Title: Type checking and normalisation
Author: Chapman, James Maitland
ISNI:       0000 0004 2685 4928
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis is about Martin-Löf's intuitionistic theory of types (type theory). Type theory is at the same time a formal system for mathematical proof and a dependently typed programming language. Dependent types are types which depend on data and therefore to type check dependently typed programming we need to perform computation(normalisation) in types. Implementations of type theory (usually some kind of automatic theorem prover or interpreter) have at their heart a type checker. Implementations of type checkers for type theory have at their heart a normaliser. In this thesis I consider type checking as it might form the basis of an implementation of type theory in the functional language Haskell and then normalisation in the more rigorous setting of the dependently typed languages Epigram and Agda. I investigate a method of proving normalisation called Big-Step Normalisation (BSN). I apply BSN to a number of calculi of increasing sophistication and provide machine checked proofs of meta theoretic properties.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA 75 Electronic computers. Computer science