Use this URL to cite or link to this record in EThOS:
Title: Novel current-mode sensor interfacing and radio blocks for cell culture monitoring
Author: Walia, Anoop Singh
ISNI:       0000 0004 2682 8789
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Access from Institution:
Since 2004 Imperial College has been developing the world’s first application-specific instrumentation aiming at the on-line, in-situ, physiochemical monitoring of adult stem cell cultures. That effort is internationally known as the ‘Intelligent Stem Cell Culture Systems’ (ISCCS) project. The ISCCS platform is formed by the functional integration of biosensors, interfacing electronics and bioreactors. Contrary to the PCB-level ISCCS platform the work presented in this thesis relates to the realization of a miniaturized cell culture monitoring platform. Specifically, this thesis details the synthesis and fabrication of pivotal VLSI circuit blocks suitable for the construction of a miniaturized microelectronic cell monitoring platform. The thesis is composed of two main parts. The first part details the design and operation of a two-stage current-input currentoutput topology suitable for three-electrode amperometric sensor measurements. The first stage is a CMOS-dual rail-class AB-current conveyor providing a low impedancevirtual ground node for a current input. The second stage is a novel hyperbolic-sinebased externally-linear internally-non-linear current amplification stage. This stage bases its operation upon the compressive sinh−1 conversion of the interfaced current to an intermediate auxiliary voltage and the subsequent sinh expansion of the same voltage. The proposed novel topology has been simulated for current-gain values ranging from 10 to 1000 using the parameters of the commercially available 0.8μm AMS CMOS process. Measured results from a chip fabricated in the same technology are also reported. The proposed interfacing/amplification architecture consumes 0.88-95μW. The second part describes the design and practical evaluation of a 13.56MHz frequency shift keying (FSK) short-range (5cm) telemetry link suitable for the monitoring of incubated cultures. Prior to the design of the full FSK radio system, a pair of 13.56MHz antennae are characterized experimentally. The experimental S-parameter-value determination of the 13.56MHz wireless link is incorporated into the Cadence Design Framework allowing a high fidelity simulation of the reported FSK radio. The transmitter of the proposed system is a novel multi-tapped seven-stage ring-oscillator-based VCO whereas the core of the receiver is an appropriately modified phase locked loop (PLL). Simulated and measured results from a 0.8μm CMOS technology chip are reported.
Supervisor: Drakakis, Emm Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral