Use this URL to cite or link to this record in EThOS:
Title: Polymer gels for dosimetry in targeted radionuclide therapy
Author: Gear, Jonathan
ISNI:       0000 0004 2679 6465
Awarding Body: Institute of Cancer Research (University Of London)
Current Institution: Institute of Cancer Research
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis Presents an investigation into the use of polymer gel dosimeters for analysis in targeted radionuclide therapy (TRT). The project aims to establish viability, technical issues, and potential uses of polymer gel dosimetry when incorporating radioisotopes. The thesis begins by outlining the current status of TRT and the need for accurate dosimetry. The inaccuracies of the dosimetry methods being employed are highlighted, as is the requirement of a "gold standard" method for dosimetry quality assurance. Polymer gel dosimeters are porposed as a possible means of achieving this. As a research topic in its own right an introduction into polymer gel dosimeters is given with a detailed description of their development and current uses in external beam radiotherapy. In the thesis polymer gel dosimeters are used in conjunction with MR and a detailed description of the MR techniques used is also given. Monte Carlo simulations are currently considered the best method to determine absorbed dose from a known activity distribution. A Monte Carlo user code written for EGSnrc has been developed to verify and validate polymer gel dosimetry. Details of the Monte Carlo code are given and comparisons made with published data. The accuracy of poymer gel dosimetry is susceptible to many factors and use with internal isotopes may introduce further technical issues. These are investigated in a number of small experiments and comparison made with external beam irradiation. A method for using polymer gel dosimeters with internal isotopes is developed and verified by comparing dose measurements and distributions with that calculated using the Monte Carlo code. Comparisons with various SPECT based dosimetry techniques have been made for geometrical phantoms of both uniform and non-uniform distributions. Methods for comparing and analysing 3D dose maps have also been investigated and the results from these experiments discussed. The thesis concludes with a case study, whereby polymer gel dosimeters are used for analysis of a specific patient situation. A patient synopsis is given with details of an anatomical phantom based on that patient. Polymer gel and SPECT based dosimetry is performed and the clinical significance of the findings discussed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available