Use this URL to cite or link to this record in EThOS:
Title: High redundancy actuator
Author: Du, Xinli
ISNI:       0000 0004 2676 2986
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Access from Institution:
High Redundancy Actuation (HRA) is a novel type of fault tolerant actuator. By comprising a relatively large number of actuation elements, faults in the elements can be inherently accommodated without resulting in a failure of the complete actuation system. By removing the possibility of faults detection and reconfiguration, HRA can provide high reliability and availability. The idea is motivated by the composition of human musculature. Our musculature can sustain damage and still function, sometimes with reduced performance, and even complete loss of a muscle group can be accommodated through kinematics redundancy, e.g. the use of just one leg. Electro-mechanical actuation is used as single element inside HRA. This thesis is started with modelling and simulation of individual actuation element and two basic structures to connect elements, in series and in parallel. A relatively simple HRA is then modelled which engages a two-by-two series-in-parallel configuration. Based on this HRA, position feedback controllers are designed using both classical and optimal algorithms under two control structures. All controllers are tested under both healthy and faults injected situations. Finally, a hardware demonstrator is set up based simulation studies. The demonstrator is controlled in real time using an xPC Target system. Experimental results show that the HRA can continuously work when one element fails, although performance degradation can be expected.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: High redundancy ; Fault tolerance ; Electromechanical actuator ; Classical control ; LQG control ; Model reduction