Use this URL to cite or link to this record in EThOS:
Title: Multidimensional fluorescence imaging and super-resolution exploiting ultrafast laser and supercontinuum technology
Author: Auksorius, Egidijus
ISNI:       0000 0004 2672 4277
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis centres on the development of multidimensional fluorescence imaging tools, with a particular emphasis on fluorescence lifetime imaging (FLIM) microscopy for application to biological research. The key aspects of this thesis are the development and application of tunable supercontinuum excitation sources based on supercontinuum generation in microstructured optical fibres and the development of stimulated emission depletion (STED) microscope capable of fluorescence lifetime imaging beyond the diffraction limit. The utility of FLIM for biological research is illustrated by examples of experimental studies of the molecular structure of sarcomeres in muscle fibres and of signalling at the immune synapse. The application of microstructured optical fibre to provide tunable supercontinuum excitation source for a range of FLIM microscopes is presented, including wide-field, Nipkow disk confocal and hyper-spectral line scanning FLIM microscopes. For the latter, a detailed description is provided of the supercontinuum source and semi-confocal line-scanning microscope configuration that realised multidimensional fluorescence imaging, resolving fluorescence images with respect to excitation and emission wavelength, fluorescence lifetime and three spatial dimensions. This included the first biological application of a fibre laser-pumped supercontinuum exploiting a tapered microstructured optical fibre that was able to generate a spectrally broad output extending to ~ 350 nm in the ultraviolet. The application of supercontinuum generation to the first super-resolved FLIM microscope is then described. This novel microscope exploited the concept of STED with a femtosecond mode-locked Ti:Sapphire laser providing a tunable excitation beam by pumping microstructured optical fibre for supercontinuum generation and directly providing the (longer wavelength) STED beam. This STED microscope was implemented in a commercial scanning confocal microscope to provide compatibility with standard biological imaging, and exploited digital holography using a spatial light modulator (SLM) to provide the appropriate phase manipulation for shaping the STED beam profile and to compensate for aberrations. The STED microscope was shown to be capable of recording super resolution in both the lateral and axial planes, according to the settings of the SLM.
Supervisor: French, Paul ; Neil, Mark Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral