Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501570
Title: Combined hydrogen diesel combustion : an experimental investigation into the effects of hydrogen addition on the exhaust gas emissions, particulate matter size distribution and chemical composition
Author: McWilliam, Lyn
ISNI:       0000 0004 2673 2234
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This investigation examines the effects of load, speed, exhaust gas recirculation (EGR) level and hydrogen addition level on the exhaust gas emissions, particulate matter size distribution and chemical composition. The experiments were performed on a 2.0 litre, 4 cylinder, direct injection engine. EGR levels were then varied from 0% to 40%. Hydrogen induction was varied between 0 and 10% vol. of the inlet charge. In the case of using hydrogen and EGR, the hydrogen replaced air. The load was varied from 0 to 5.4 bar BMEP at two engine speeds, 1500 rpm and 2500 rpm. For this investigation the carbon monoxide (CO), total unburnt hydrocarbons (THC), nitrogen oxides (NOX) and the filter smoke number (FSN) were all measured. The in-cylinder pressure was also captured to allow the heat release rate to be calculated and, therefore, the combustion to be analysed. A gravimetric analysis of the particulate matter size distribution was conducted using a nano-MOUDI. Finally, a GC-MS was used to determine the chemical composition of the THC emissions. The experimental data showed that although CO, FSN and THC increase with EGR, NOX emissions decrease. Inversely, CO, FSN and THC emissions decrease with hydrogen, but NOX increases. When hydrogen was introduced the peak cylinder pressure was increased, as was the maximum rate of in-cylinder pressure rise. The position of the peak cylinder pressure was delayed as hydrogen addition increased. This together with the obtained heat release patterns shows an increase in ignition delay, and a higher proportion of premixed combustion. The experimental work showed that the particulate matter size distribution was not dramatically altered by the addition of EGR, but the main peak was slightly shifted towards the nucleation mode with the addition of hydrogen. Hydrogen addition does not appear to have a large effect on the chemical composition of the THC, but does dramatically decrease the emissions.
Supervisor: Megaritis, T. ; Zhao, H. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.501570  DOI: Not available
Keywords: gas chromatography-mass spectrometry ; total unburnt hydrocarbons ; nitrogen oxides ; nano-micro orifice uniform deposit impactor (moudi)
Share: