Use this URL to cite or link to this record in EThOS:
Title: Positron impact ionization phenomena
Author: Murtagh, Daniel James
ISNI:       0000 0004 2669 2455
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2007
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
In the present work, a beam of positrons, obtained from a radioactive source (MNa) in conjunction with a W moderator and guided by a magnetic field, has been used to investigate low energy positron-impact ionization phenomena from atomic and molecular targets. For He below threshold, the investigation discovered vacuum contaminants in creased with gas load and hence concluded that the high 7-ray/ion signal observed by Szluinska and Laricchia (2004a) in Ne could not be safely attributed to annihila tion. A detailed measurement of the total ionization cross-section for He has been performed from below threshold for Ps formation to high energy. Combined with previously measured data and previously measured direct ionization cross-sections (Moxom et al 1996, Ashley et al 1996), a new determination of the positronium formation cross-section has been achieved and compared to other available experi mental measurements and theoretical calculations. Measurements of the excited state (n > 1) positronium formation cross-section for He and Ar have been performed and compared to available theoretical calcu lations. This work has been motivated both for a direct comparison with theory and to test the hypothesis that structure observed in the total (all n) positron ium formation cross-sections for the heavier noble gases, is due to excited state positronium formation (Laricchia et al 2002). The present study is unable to verify fully this hypothesis due to the experimental methods insensitivity to positronium formation in to the 2S or n > 2 states. However, the present results are close to the most sophisticated theoretical calculation of positronium formation into the 2P state (Campbell et al 1998).
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available