Use this URL to cite or link to this record in EThOS:
Title: Improved quantification of perfusion in patients with cerebrovascular disease
Author: Willats, Lisa
ISNI:       0000 0004 2672 957X
Awarding Body: University of London
Current Institution: University College London (University of London)
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
In recent years measurements of cerebral perfusion using bolus-tracking MRI have become common clinical practice in the diagnosis and management of patients with stroke and cerebrovascular disease. An active area of research is the development of methods to identify brain tissue that is at risk of irreversible damage, but amenable to salvage using reperfusion treatments, such as thrombolysis. However, the specificity and sensitivity of these methods are limited by the inaccuracies in the perfusion data. Accurate measurements of perfusion are difficult to obtain, especially in patients with cerebrovascular diseases. In particular, if the bolus of MR contrast is delayed and/or dispersed due to cerebral arterial abnormalities, perfusion is likely to be underestimated using the standard analysis techniques. The potential for such underestimation is often overlooked when using the perfusion maps to assess stroke patients. Since thrombolysis can increase the risk of haemorrhage, a misidentification of 'at-risk' tissue has potentially dangerous clinical implications. This thesis presents several methodologies which aim to improve the accuracy and interpretation of the analysed bolus-tracking data. Two novel data analysis techniques are proposed, which enable the identification of brain regions where delay and dispersion of the bolus are likely to bias the perfusion measurements. In this way true hypoperfusion can be distinguished from erroneously low perfusion estimates. The size of the perfusion measurement errors are investigated in vivo, and a parameterised characterisation of the bolus delay and dispersion is obtained. Such information is valuable for the interpretation of in vivo data, and for further investigation into the effects of abnormal vasculature on perfusion estimates. Finally, methodology is presented to minimise the perfusion measurement errors prevalent in patients with cerebrovascular diseases. The in vivo application of this method highlights the dangers of interpreting perfusion values independently of the bolus delay and dispersion.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available