Use this URL to cite or link to this record in EThOS:
Title: Calcium oxalate modulation of tubular epithelial cell mitochondria : oxidative vulnerability due to restricted glutathione homeostasis
Author: Meimaridou, Eirini
ISNI:       0000 0004 2672 0153
Awarding Body: University of London
Current Institution: University College London (University of London)
Date of Award: 2007
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Calcium oxalate (COM) crystals are the commonest component of kidney stones. These arise mainly in the distal tubules and collecting ducts. To gain further insight for the cellular damage in terms of oxidative stress caused by COM deposition, in vitro and in vivo model studies were performed. In vitro In renal distal tubule cells, COM and free oxalate treatment caused a 3- and 2-fold increase respectively in superoxide (O2*") formation, originating from mitochondria. This was measured by lucigenin chemiluminescence in digitonin permeabilised cells. However, hydroxyapatite produced a much lower but significant enhancement of 02*", whilst other micro-particles, uric acid crystals, brushite, zymosan, and latex beads had no effect. When EDTA was omitted during O2*" monitoring, COM induced mitochondrial 02*" was ablated indicating a requirement for the release of free oxalate. Mitochondrial oxalate uptake was studied by employing different oxalate transport inhibitors. Omitting phosphate from the media or using mersalyl both of which block dicarboxylate transport, caused a significant decrease in the 02*" formation evoked by COM treatments. Using the membrane potential sensitive-probe tetramethylrhodamine methyl ester (TMRM) together with confocal microscopy, evidence is presented that in cells where COM binding had occurred a marked change in the mitochondrial membrane potential (Aij/m) occurred. COM also modulated intracellular Ca2+ signalling as demonstrated using the Ca2- sensitive dye Fura-2 AM, and this was via a non-mitochondrial mechanism. In Vivo Using a rat model of crystalluria and renal stones initiated by treatment with ethylene glycol (EG) and 1, 25-dihydroxycholecalciferol (DHC), nephrolithiasis arose in kidneys and this was linked to oxidative stress. In the EG + DHC treated animals where crystalluria was evident, this oxidative insult was manifest by a decrease in total and mitochondrial glutathione concentration, as well as an increased activity of glucose-6-phosphate dehydrogenase. Severe kidney damage at the mitochondria level was a further observation, indicated by the diminished O2 consumption resulting in a lowered O2 production. In addition, histopathological analysis revealed increased renal tubular pathology characterised by obstruction, distension and interstitial inflammation. The above findings were not observed in hyperoxaluria (EG) or calciuria (DHC) and are therefore a direct effect of crystal formation in kidney distal tubules that have implications in kidney stone disease which are discussed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available