Use this URL to cite or link to this record in EThOS:
Title: Tear and skin phospholipids analysis and hydrogel analogues
Author: Campbell, Darren
ISNI:       0000 0001 3516 1099
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 2007
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis is concerned with the analysis of phospholipids in the tear film and with the synthesis of phospholipids analogous to hydrogels. The work consists of two areas. The first area is the study of the phospholipids in the tear film, their nature and fate. The use of liquid chromatography mass spectrometry determined that the concentration of phospholipids in the tear film was less than previously thought. Thin layer chromatography showed the presence of diacylglycerides (DAGs) in the tear film at relatively high concentrations. The activity of an enzyme, phospholipase C, was found in the tear film. It was hypothesised that the low concentration of phospholipids and high concentrations of DAG in the tear film was due to the action of this enzyme. The second area of study was the synthesis of phospholipids analogous materials for use in ocular and dermal applications. For ocular applications the synthesis involved the use of the monomer N,N-dimethyl-N-(2-acryloylethyl)-N-(3-sulfopropyl) ammonium betaine (SPDA) in combination with 2-hdyroxyethyl methacrylate (HEMA). Charge-balanced membranes were also synthesised using potentially anionic monomers in conjunction with cationic monomers in stoichiometrically equivalent ratios also with HEMA as a commoner. Membranes of SPDA copolymers and charge-balanced copolymers proved to have some properties suitable for ocular applications. The dermal materials consisted of one family of partially hydrated hydrogels synthesised from SPDA in combination with ionic monomers: sodium 2-(acrylamido)-2-methyl propane sulfonate and acrylic acid-bis(3-sulfopropyl)-ester, potassium salt. A second family of partially hydrated hydrogels was synthesised from N-vinyl pyrrolidone. Both of the partially hydrated hydrogels synthesised proved to have some properties suitable for use as adhesives for the skin.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
Keywords: Applied Chemistry ; Chemical Engineering