Use this URL to cite or link to this record in EThOS:
Title: Synthesis of drug intermediates in carbon dioxide
Author: Clark, Peter David
ISNI:       0000 0001 3556 1017
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2007
Availability of Full Text:
Access from EThOS:
Access from Institution:
The application of supercritical C0₂(scC0₂) as a solvent for the synthesis of fine and bulk chemicals has been well documented; however its application as a solvent for the synthesis of pharmaceuticals is yet to be exploited fully. To address this issue, two synthetically important reactions have been investigated in scC0₂; chemoselective N-debenzylation and diastereoselective hydrogenation. Chapter 3 details the study of catalytic N-debenzylation in the presence of sensitive functional groups (COMe and Cl). It has been shown that selective N-debenzylation in the presence of a carbonyl (COMe) is difficult to achieve due to the high operating temperatures that are required to facilitate continuous flow debenzylation. N-debenzylation in the presence of chloro- substituents was also investigated. Dechlorination can be a major problem during this reaction however several different strategies were developed to suppress dechlorination including: (i) the correct selection of catalyst support; (ii) selective poisoning of a Pd catalyst; (iii) the addition of acids, such as H₂S0₄ to the reactant stream; (iv) the use of an aprotic co-solvent, such as THF. Chapter 4 covers progress made on the diastereoselective hydrogenation of the pharmaceutical intermediate, rac-sertraline imine. It has been shown that the hydrogenation reaction can be performed with excellent levels of chemo- and diastereoselectivity (cis:trans ratio of 97:3, 0.7 % by-product formation) by performing the reaction as a continuous flow process in the presence of scC0₂ All details of the apparatus, experimental and synthetic procedures are reported in Chapter 2.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QD450 Physical and theoretical chemistry