Use this URL to cite or link to this record in EThOS:
Title: An agent-independent task learning framework
Author: Wood, Mark A.
ISNI:       0000 0000 7664 7813
Awarding Body: University of Bath
Current Institution: University of Bath
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Access from Institution:
We propose that for all situated agents, the process of task learning has many elements in common. A better understanding of these elements would be beneficial to both engineers attempting to design new agents for task learning and completion, and also to scientists seeking to better understand natural task learning. Therefore, this dissertation sets out our characterisation of agent-independent task learning, and explores its grounding in nature and utility in practise. We achieve this chiefly through the construction and demonstration of two novel task learning systems. Cross-Channel Observation and Imitation Learning (COIL; Wood and Bryson, 2007a,b) is our adaptation of Deb Roy’s Cross-Channel Early Lexical Learning System (CELL; Roy, 1999; Roy and Pentland, 2002) for agent-independent task learning by imitation. The General Task Learning Framework (GTLF) is built upon many of the principles learned through the development of COIL, and can additionally facilitate multi-modal, lifelong learning of complex skills and skill hierarchies. Both systems are validated through experiments conducted in the virtual reality-style game domain of Unreal Tournament (Digital Extremes, 1999). By applying agent-independent learning processes to virtual agents of this kind, we hope that researchers will be more inclined to consider them on a par with robots as tools for learning research.
Supervisor: Bryson, Joanna Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: artificial intelligence ; machine learning ; computer games ; behaviour modelling