Use this URL to cite or link to this record in EThOS:
Title: Path integral quantum Monte Carlo for semiconductor nanostructures
Author: Gillies, Patrick R.
ISNI:       0000 0001 3500 1781
Awarding Body: Heriot-Watt University
Current Institution: Heriot-Watt University
Date of Award: 2007
Availability of Full Text:
Access from EThOS:
Access from Institution:
Path integral quantum Monte Carlo (PI-QMC) is a powerful technique, which can be used to model the properties of multiple interacting particles at finite temperatures. In this work path integral quantum Monte Carlo has been applied to the problem of few particle interactions in quantum dots and other semiconductor nanostructures. Quantum dots are currently the subject of much research and in order to further understand their properties it is necessary to perform theoretical modelling. In this work, the method by which the problem of the attractive Coulomb potential was overcome is detailed. Following that, comparisons are made between . experimental data and PI-QMC results for excitonic complexes in 111-V dots. Both the energies and voltage extents were found to show good agreement between experiment and theory. Comparisons are also between theory and experiment of II-VI, with experimental data using a harmonic potential to model the dot. Again, good agreement is seen. Finally, as an example of the power of PI-QMC, the behaviour of electrons and holes is modelled for alternative nanostructures, such as coupled quantum dots, quantum rings and core-shell structures. With some simple modifications, the same PI-QMC method could be used.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available