Use this URL to cite or link to this record in EThOS:
Title: Advancements in nuclear waste assay
Author: Curtis, Deborah Claire
ISNI:       0000 0001 3400 776X
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Access from Institution:
The research described in this thesis is directed at advancing the state of the practice of the non-destructive gamma-ray assay of nuclear waste containers. A number of potentially accuracy-limiting issues were identified and addressed, resulting in new developments which were implemented on an instrument prior to entering it into service. A set of Pu reference sources used for experimental data have been studied to determine the internal composition (density and fill height) of the sources to assist with validation of a point kernel model. This model has been used to observe the behaviour of gamma-rays in lumps of fissile material from plutonium over the mass range 0.001g to 350g, for a number of densities corresponding to Pu, PuO\(_2\) and PuF\(_3\). Established lump corrections have been analysed and have been found to produce large over- and under-corrected results for the range of masses. Due to the inadequacies of current techniques, a new Pu self-absorption correction method has been developed using the data from numerical simulations, allowing nature to reveal the correlations rather than traditional approaches based upon approximate models. For a 25g 1cm-high Pu flat-plate of density\(^{-3}\), the developed Pu correction produces a result of (24.9 ± 8.8)g compared to (19.5 ± 0.9)g for the Fleissner 2-line method, and (14.7 ± 0.4)g for the Infinite Energy Extrapolation method. The developed Pu correction method has been extended to the application of uranium lumps in waste matrices, provided the enrichment of the sample is known or may be determined via sophisticated isotopic analysis methods such as MGAU or FRAM. The U self-absorption correction method has been found to produce results within 30% of the true mass of the sample for the lumps studied. An analysis of ‘real drum’ effects has been performed, including the revisiting of the Total Measurement Uncertainty (incorporating the uncertainty components of the new Pu and U self-absorption corrections) and results from known sources placed in artificial inhomogeneous waste matrices assayed inside a Canberra Auto Q2 system.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QC Physics