Use this URL to cite or link to this record in EThOS:
Title: A study of jets at the STAR experiment at the relativistic heavy ion collider via two-particle correlations
Author: Gaillard, Léon
ISNI:       0000 0001 3486 4569
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Access from Institution:
Jets have been studied in high energy heavy ion collisions by measuring the angular correlation between particles at high transverse momentum. Differences in the yield and shape of the angular correlations as a function of system size give information on the medium produced in the collision. Such modifications can be used to infer the presence of a Quark-Gluon Plasma phase, wherein parton degrees of freedom are manifest over nuclear rather than nucleonic scales. In the present work, two-particle correlations were studied in \(d+Au\) and \(Au+Au\) collisions at \(\sqrt{s_{NN}}\) = 200 GeV measured by the STAR experiment at RHIC. The technique was extended to include pseudo-rapidity, permitting jets to be characterised in two-dimensions, and enabling the jet shape to be studied in greater detail. Corrections were developed for the incomplete detector acceptance and finite two-track resolution. Both unidentified and identified particle correlations were studied, using charged tracks and neutral strange particles \(\Lambda , \overline{\Lambda}\) , and \(K^0_{Short}\) reconstructed from their characteristic \(V\)0 decay topology. The focus of the analysis was the correlation peak centred at zero azimuthal separation, which is significantly enhanced in central \(Au+Au\) collisions compared to lighter systems. The modified peak was found to comprise a jet-like peak broadened in the pseudo-rapidity direction, sitting atop a long range pseudo-rapidity correlation. The former is suggestive of jet modification by the medium, and the latter may indicate a medium response to jets. Correlations with identified particles indicated the modified same side peak may in part be formed from particles originating from the underlying event.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QC Physics