Use this URL to cite or link to this record in EThOS:
Title: Finite element for the analysis of rotor-dynamic systems that include gyroscopic effects
Author: Jones, Simon
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2005
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis presents new finite element formulations for the analysis of rotor-dynamic systems that include the effects of gyroscopic influence. Euler-Bernoulli finite elements have been created for both shaft and propeller descriptions. In addition to the gyroscopic effects, centrifugal stiffening has been considered for the propeller elements. The principle of virtual work has been used to determine the equations of motion and formulate element matrices. The proposed element matrices have been incorporated in the VIBRATIO suite of vibration analysis software in order to test the formulations. The software uses an innovative hybrid modelling technique that enables the user to analyse various dynamic problems including rotating beam elements with rigid body attachments. A model of a ship's drive shaft has been created in VIBRATIO for comparison against a verified ANSYS model. Results for forced vibration shaft analysis show excellent correlation between VIBRATIO's Euler shaft formulation and ANSYS's Timoshenko formulation. Incremental analyses of propeller systems using the novel gyroscopic formulation show gyroscopic effects of flexible blade attachments, and also the changing mode shapes and frequencies due to centrifugal stiffening. Results show gyroscopic and centrifugal stiffening effects must not be ignored for an accurate propeller analysis.
Supervisor: Esat, I. I. Sponsor: Brunel University
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available