Use this URL to cite or link to this record in EThOS:
Title: Studies in relaxation
Author: Hadjipavlou, Savas
ISNI:       0000 0001 3523 6740
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 1978
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This work concerns itself with the exact study of the dynamical properties of two model systems. After a brief summary of theory and concepts previous work is discussed, and this provides the motivation for the formulation of the first model. This quantum mechanical lattice model and some of its equilibrium properties are described in Chapter II. The dynamical problem to be studied is formulated in Chapter III; this is essentially the study of the time evolution (generated by the Hamiltonian) of a finite system at temperature T1 coupled to an infinite copy of itself at a temperature T2 and acting as a heat bath for the system. The problem is solved for the special case, when the coupling as scaled by the parameter γ, takes the value γ = 1. The general case for arbitrary γ values is treated in Chapter IV. It is shown that the system approaches the equilibrium state of the heat bath in a non-exponential manner, provided the spectrum of the Hamiltonian is continuous and does not have a discrete part. This result is in complete accord with the findings of other work summarised in Chapter I. The mixing properties of the model and behaviour of the relaxation rate in the weak coupling limit are studied in Chapter V. The model is shown to fail to behave as a calorimeter and in view of this result the relevance of the concept of mixing to irreversible behaviour is discussed. The main conclusions and results for the model are summarised at the end of Chapter V. The second model discussed, was first introduced by R.J. Glauber to study the dynamics of the Ising chain. The main feature here is that the time evolution is defined through a Master equation, and the associated stochastic operator. It is shown in Chapter VI that exploiting fully the free fermion character of the stochastic operator for the Glauber model, it is possible to provide a simple method to the study of the dynamics of the Ising Chain.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Statistical mechanics