Use this URL to cite or link to this record in EThOS:
Title: Using goal structure to direct search in a problem solver
Author: Tate, Brian Austin
ISNI:       0000 0001 2440 0840
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 1975
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This thesis describes a class of problems in which interactions occur when plans to achieve members of a set of simultaneous goals are concatenated in the hope of achieving the whole goal. They will be termed "interaction problems". Several well known problems fall into this class. Swapping the values of two computer registers is a typical example. A very simple 3 block problem is used to illustrate the interaction difficulty. It is used to describe how a simple method can be employed to derive enough information from an interaction which has occurred to allow problem solving to proceed effectively. The method used to detect interactions and derive information from them, allowing problem solving to be re-directed, relies on an analysis of the goal and subgoal structure being considered by the problem solver. This goal structure will be called the "approach" taken by the system. It specifies the order in which individual goals are being attempted and any precedence relationships between them (say because one goal is a precondition of an action to achieve another). We argue that the goal structure of a problem contains information which is simpler and more meaningful than the actual plan (sequence of actions) being considered. We then show how an analysis of the goal structure of a problem, and the correction of such a structure in the light of any interaction, can direct the search towards a successful solution. Interaction problems pose particular difficulties for most current problem solvers because they achieve each part of a composite goal independently and assume that the resulting plans can be concatenated to achieve the overall goal. This assumption is beneficial in that it can drastically reduce the search necessary in many problems. However, it does restrict the range of problems which can be tackled. The problem solver, INTERPLAN, to be described as a result of this investigation, also assumes that subgoals can be solved independently, but when an interaction is detected it performs an analysis of the goal structure of the problem to re-direct the search. INTERPLAN is an efficient system which allows the class of interaction problems to be coped with. INTERPLAN uses a data structure called a "ticklist" as the basis of its mechanism for keeping track of the search it performs. The ticklist allows a very simple method to be employed for detecting and correcting for interactions by providing a summary of the goal structure of the problem being tried.
Supervisor: Michie, Donald Sponsor: Science Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Automatic theorem proving ; Problem solving (Mathematics) ; INTERPLAN ; data structures