Use this URL to cite or link to this record in EThOS:
Title: Two-phase heat transfer and fouling in hydrocarbon vaporizers
Author: Kolaczkowski, S. T.
ISNI:       0000 0001 2452 2282
Awarding Body: University of Bath
Current Institution: University of Bath
Date of Award: 1977
Availability of Full Text:
Access from EThOS:
Access from Institution:
Local heat transfer coefficients were measured during the forced convective flow vaporization of a 60% v/v methyl- cyclohexane/40% v/v n-hexane mixture in a 48 Kw electrically heated horizontal furnace tube (15 feet long, 3/4 inch I.D.). Experimental single-phase heat transfer coefficients were a factor of 1.18 higher than those predicted by the Dittus-Boelter equation. In two-phase flow a large variation occurred in circumferential heat transfer coefficients (up to 250%) and large departures were observed from values predicted by the Chen correlation. For example, in the subcooled nucleate boiling regime, measured heat transfer coefficients were as much as three times the predicted values. Mandhane et al's flow pattern map only provided an indication of observed flow regimes. In an attempt to predict fouling a single-phase model was developed based upon a two step reaction in which all diffusional and kinetic resistances were included. Removal was considered to be by mass transfer and fluid shear. Considerable success was obtained in applying the model to Watkinson's (2) data on gas oils. The model was applied in a semi-quantitative manner to data on two-phase heat transfer coefficients to assist in the prediction of fouling in vaporizers. Even a slight variation in coefficients had a significant effect on fouling.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available