Use this URL to cite or link to this record in EThOS:
Title: Productivity analysis and measurement
Author: Jassbi, Abdollah J.
ISNI:       0000 0001 3589 4153
Awarding Body: University of Aston in Birmingham
Current Institution: Aston University
Date of Award: 1979
Availability of Full Text:
Access from EThOS:
Access from Institution:
The state of the art in productivity measurement and analysis shows a gap between simple methods having little relevance in practice and sophisticated mathematical theory which is unwieldy for strategic and tactical planning purposes, -particularly at company level. An extension is made in this thesis to the method of productivity measurement and analysis based on the concept of added value, appropriate to those companies in which the materials, bought-in parts and services change substantially and a number of plants and inter-related units are involved in providing components for final assembly. Reviews and comparisons of productivity measurement dealing with alternative indices and their problems have been made and appropriate solutions put forward to productivity analysis in general and the added value method in particular. Based on this concept and method, three kinds of computerised models two of them deterministic, called sensitivity analysis and deterministic appraisal, and the third one, stochastic, called risk simulation, have been developed to cope with the planning of productivity and productivity growth with reference to the changes in their component variables, ranging from a single value 'to• a class interval of values of a productivity distribution. The models are designed to be flexible and can be adjusted according to the available computer capacity expected accuracy and 'presentation of the output. The stochastic model is based on the assumption of statistical independence between individual variables and the existence of normality in their probability distributions. The component variables have been forecasted using polynomials of degree four. This model is tested by comparisons of its behaviour with that of mathematical model using real historical data from British Leyland, and the results were satisfactory within acceptable levels of accuracy. Modifications to the model and its statistical treatment have been made as required. The results of applying these measurements and planning models to the British motor vehicle manufacturing companies are presented and discussed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Production Processes