Use this URL to cite or link to this record in EThOS:
Title: Fluorine derivatives of antimony and some transition metals
Author: Hewitt, Alan John
ISNI:       0000 0001 3555 5100
Awarding Body: University of Leicester
Current Institution: University of Leicester
Date of Award: 1976
Availability of Full Text:
Access from EThOS:
Access from Institution:
Incomplete fluorination of antimony metal in a flow system produces SbF5 and a mixture of yellow and white high melting solids. Vacuum sublimation of the mixture at -140 produces a white crystalline solid which consists of a mixture of Sb11F43 and SbF3, whereas sublimation at >240 yields a compound con-taining the [Sb2F11]- anion. The ruthenium carbonyl fluorides, (Ru(C0)3F2)4 and Ru(CO)3F3 have been prepared in high yield by the room temperatur fluorination of Ru3(CO)12 in 1,1,2-trichlorotrifluoroethane or anhydrous hydrogen fluoride as solvents, and (Ru(CO)3F2.RuF5)2 by the high temperature fluorination of Ru3(CO)12 with XeF2 and by carbonylation of RuF5 with carbon monoxide. Infrared spectroscopy, magnetic susceptibility and electron spin resonance spectroscopy have shown that Ru(CO)3F3 is monomeric but that the structure of (Ru(CO)3F2.RuF5)2 is closely related to that of (Ru(CO)3F2)4 and (RuF5)4, which have been previously character-ized by single crystal X-ray diffraction as fluorine-bridged tetramars. The reaction of one mole of Os3(CO)12 with greater than or equal to three moles of XeF2 yields the osmium carbonyl fluoride, (Os(CO)3F2)4, whereas reaction with XeF6 yields products which have not fully been characterized. The rhenium carbonyl fluoride, Re(CO)5F, has been prepared by the reaction of Re(CO)5Cl with anhydrous hydrogen fluoride.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available