Use this URL to cite or link to this record in EThOS:
Title: The effects of protective clothing and its properties on energy consumption during different activities
Author: Dorman, Lucy E.
ISNI:       0000 0001 3429 4316
Awarding Body: Loughborough University
Current Institution: Loughborough University
Date of Award: 2007
Availability of Full Text:
Access from EThOS:
Access from Institution:
There are many situations where workers are required to wear personal protective clothing (PPC), to protect against a primary hazard, such as heat or chemicals. But the PPC can also create ergonomic problems and there are important side effects which typically increase with rising protection requirements. The most extensively studied side effect is that of increased heat strain due to reduced heat and vapour transfer from the skin. Less studied is the extra weight, bulk and stiffness of PPC garments which is likely to increase the energy requirements of the worker, reduce the range of movement and lead to impaired performance. Current heat and cold stress standards assume workers are wearing light, vapour permeable clothing. By failing to consider the metabolic effects of actual PPC garments, the standards will underestimate heat production and therefore current standards cannot be accurately applied to workers wearing PPC. Information on the effect of the clothing on the wearer and the interactions between PPC, wearer and environment is limited. Data was collected to quantify the effect of PPC on metabolic load based on the properties of the PPC for the EU THERMPROTECT project (GERD-CT-2002-00846). The main objective of the project was to provide data to allow heat and cold stress assessment standards to be updated so that they need no longer exclude specialised protective clothing. The aim of this thesis was to investigate the effect of PPC and its properties on energy consumption during work. For this purpose, the effects of a range of PPC garments (Chapter 3), weight (Chapter 4), number of layers and material friction (Chapter 5) and wet layers (Chapter 6) on energy consumption whilst walking, stepping and completing an obstacle course were studied. The impact of PPC on range of movement in the lower limbs was also investigated (Chapter 7). The main findings were; a) Increased metabolic cost of 2.4 - 20.9% when walking, stepping and completing an obstacle course in PPC compared to a control condition. b) An average metabolic rate increase of 2.7% per kg increase in clothing weight, with greater increases with clothing that is heavier on the limbs and in work requiring greater ranges of movement. c) 4.5 to 7.9% increase in metabolic cost of walking and completing an obstacle course wearing 4 layers compared to a single layer control condition of the same weight. d) Changes in range of movement in PPC due to individual behavioural adaptations. e) Garment torso bulk is the strongest correlate of an increased metabolic rate when working in PPC (r=0.828, p<0.001). f) Garment leg bulk (r=0.615), lower sleeve weight (r=0.655) and weight of the garment around the crotch (r=0.638) are also all positively correlated with an increased metabolic rate. Total clothing weight and clothing insulation had r values of 0.5 and 0.35 respectively. This thesis has confirmed the major effect of clothing on metabolic rate, and the importance of including this effect in standards and models.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Protective clothing ; Energy consumption ; Metabolic rate ; Clothing weight ; Layers ; Friction ; k ; Stiffness ; Range of movement