Use this URL to cite or link to this record in EThOS:
Title: Bioregional development : an analysis of the environmental implications of local 'closed loop' uncoated woodfree printing and writing paper recycling
Author: Hart, Anthony
ISNI:       0000 0001 3540 6244
Awarding Body: University of Surrey
Current Institution: University of Surrey
Date of Award: 2004
Availability of Full Text:
Access from EThOS:
Access from Institution:
The main objective of this research was to assess the potential environmental benefits of the 'Local Paper for London' (LPfL) cycle. A key challenge was to improve the efficiency of uncoated woodfree printing and writing (uwf P+W) paper recycling from London's commercial sector. This is achieved by 'closed-loop' recycling, whereby commercial consumers direct their waste paper back through a defined cycle to the recycled paper production facility from where they procure their 100% recycled uwf P+W paper. Life cycle assessment was used to define and compare the environmental burdens of the LPfL cycle with those of conventional supply strategies for uwf P+W papers available to consumers in the UK. Previous LCA studies into waste paper recycling show that key environmental burdens are associated with energy generation, sludge disposal and transportation in the waste paper collection and finished product delivery phases. Improvement strategies are developed to address these issues in the LPfL cycle. The results point to the development of a city-scale PAPER-Materials and Energy Recovery Facility (PAPER-MERF). At such a plant, based near the recycled paper production site, waste paper can be separated into recoverable fibre suitable for uwf P+W paper reproduction and a fibre-based recoverable energy stock; thus, in theory, the cycle has the potential to be completely powered by renewable energy. Some of the fibre sludge generated in the pulping process is also used to generate energy. Fibre sludge can also be used on or off-site for a fibreboard co-product stream. Burdens associated with transportation of finished paper are vastly reduced since the target consumers are local and, potentially, the finished goods delivery phase can be integrated with the waste paper collection cycle. The research also considers non-environmental impacts, whereby regional waste paper availability and the fibre sustainability of the LPfL product are both proven to be viable.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Eng.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available