Use this URL to cite or link to this record in EThOS:
Title: Gyroplane handling qualities assessment using flight testing and simulation techniques
Author: Bagiev, Marat
ISNI:       0000 0001 3435 3638
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2005
Availability of Full Text:
Access from EThOS:
Access from Institution:
Handling qualities are without doubt one of the primary objectives of the design of modem rotary-wing aircraft, where improved handling qualities increase mission effectiveness and flight safety, and reduce pilot workload. This dissertation provides results of an assessment of gyroplane handling qualities using flight testing and simulation techniques. Since at the time of writing, there are no direct handling qualities requirements and criteria developed for light gyroplanes anywhere in the world, objective handling qualities of the G-UNIV research gyroplane are estimated using criteria from numerous fixed and rotary wing aircraft specifications. To obtain subjective handling qualities gyroplane test manoeuvres must be designed. In this thesis inverse simulation is proposed as a preliminary tool in designing gyroplane manoeuvres. A high fidelity, individual blade/blade element coupled rotor-fuselage mathematical model of a gyroplane, GSIM is developed and successfully coupled with a generic inverse simulation algorithm GENISA to form an inverse simulation package GENISA/GSIM. Two gyroplane manoeuvres, slalom and acceleration-deceleration, are designed based on those from the Aeronautical Design Standard ADS-33E-PRF. A flight test programme for the G-UNIV research gyroplane is conducted to demonstrate the use of the designed gyroplane manoeuvres and obtain subjective handling qualities. Preliminary recommendations are proposed regarding suitability of handling qualities criteria of fixed and rotary wing aircraft. In addition, this dissertation proposes two handling qualities criteria for a light gyroplane, roll quickness and pilot attack criteria for the slalom manoeuvre.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TL Motor vehicles. Aeronautics. Astronautics