Use this URL to cite or link to this record in EThOS:
Title: The role of muscle tendon unit elasticity in real life activities
Author: Lichtwark, Glen Anthony
ISNI:       0000 0001 3609 7498
Awarding Body: University of London
Current Institution: University College London (University of London)
Date of Award: 2005
Availability of Full Text:
Access from EThOS:
Access from Institution:
The interaction of a muscle and associated tendon during dynamic activities such as locomotion is critical for both force production and economical movement. It is generally assumed that, under sub-maximal conditions, muscle activation patterns are optimised to achieve maximum efficiency of work. Here, I explore the interaction between the contractile component (CC) and the elastic tendinous tissue to understand the relationship between a muscle's power output and efficiency. In this thesis, I examine the interaction of the CE and the elastic tendinous tissue and its effect on power output and efficiency of muscle using both experimental and modelling techniques. In the first chapter, a model of muscle energetics is developed and validated against dynamic muscle contractions of different muscle types. I then used this model to explore how optimal muscle power and efficiency varies with different activation conditions, clastic properties and length change trajectories. The third and forth chapter presents experiments which explore ultrasound measurement techniques for determining the length changes and mechanical properties of the human gastrocnemius medial is (GM) muscle fibres and Achilles tendon (AT) respectively. I then used similar techniques to explore musclc-tcndon unit (MTU) interaction during gait under different gait conditions. Specifically, I explore how GM power output and efficiency vary with different speeds and inclination and explore how variation in tendinous compliance might influence muscle efficiency. The results suggest that muscles remain highly efficient due to compliant tendons allowing muscle fibres to act at highly powerful and efficient velocities. However variation in power output and particularly muscle function affects the efficiency of muscle. Finally, I determined that the optimal value of tendon stiffness for maximum GM efficiency during walking and running is close to that determined experimentally.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available