Use this URL to cite or link to this record in EThOS:
Title: Reproduction and larval biology of North Atlantic asteroids related to the invasion of the deep sea
Author: Benitez Villalobos, F.
ISNI:       0000 0001 3547 3850
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2005
Availability of Full Text:
Access from EThOS:
Access from Institution:
A very important objective of ecological research is to explain the evolution of life histories, more specifically how natural selection modifies reproduction and development in order to generate the patterns that are observed in nature. With few exceptions, the reproductive mechanisms and patterns found in deep-water echinoderms are entirely similar to those found in shallow-water species. The aims of this study were 1) to examine the reproductive biology of the many deep-sea asteroids found on the continental slope to the west of Europe in order to determine if the reproductive adaptations are a function of depth, distribution or are phylogenetically controlled, and 2) to conduct experiments on the effects of pressure and temperature on larval development of Atlantic asteroids, to investigate the physiological potential for deep sea invasion by shallow-water species. Eggs of the shallow-water asteroids Asterias rubens Linnaeus and Marthasterias glacialis (Linnaeus) were fertilized in vitro and incubated through the early embryonic cleavages until the larval stage. They were subjected to different temperature/pressure regimes. Early embryos were able to tolerate pressures up to 150 atm at 15oC and 100 atm at 10oC. Survivorship of A. rubens swimming bipinnaria remained high (> 70%) after incubation at all the pressure/temperature combinations. In M. glacialis the highest survival of swimming larvae was 100% at 1 atm/5, 15 and 20oC and 50 atm/15 and 20oC. Data for the temperature and pressure effects on the later stages of development suggest that all the larval stages are more temperature/pressure tolerant than the early embryos and survivorship becomes greater with larval age. Therefore, the larvae of these two species could survive transport to deeper waters and these species may be capable of sending colonists to the deep sea. In the deep NE Atlantic the habitat has selected for species with specific reproductive traits, which provide them with successful and advantageous life history strategies. This can be clearly observed in the upper bathyal zone between 700 and 1100 m, where the environmental conditions have selected for small species with low fecundity and large eggs, plus habits related directly or indirectly with suspension feeding. These species exhibit reproductive features with trends to the opportunistic strategy and are distinctive of unpredictable environments, although their large egg size probably follows the general trend observed in species from cold waters in order to provide the larvae with energy sufficient for a high survival possibility. Conversely, phylogenetic and evolutionary factors are also important and seem to be decisive at the deepest waters where basically mainly species belonging to the strict deep-sea family Porcellanasteridae are found. All these species possess a mixture of features typical of classical K strategists and equilibrium strategists, which enable them to persist in a relatively stable environment with low energy availability. A comprehensive knowledge of the reproductive processes of the deep-sea fauna is essential in order to evaluate the level of variability caused in the environment principally by human activity and the possible effects on life-history of the species.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QH301 Biology