Use this URL to cite or link to this record in EThOS:
Title: Multi-wavelength studies of wind driving cataclysmic variables
Author: Witherick, Dugan Kenneth
ISNI:       0000 0001 3571 1572
Awarding Body: UCL (University College London)
Current Institution: University College London (University of London)
Date of Award: 2005
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This thesis presents several case studies of disc winds from high-state cataclysmic variable stars, based on multi-wavelength time-series spectroscopy. The research presented here primarily focuses on three low-inclination, nova-like systems: RW Sextansis, V592 Cassiopeiae and BZ Camelopardalis. The aim was to derive and compare key spectral line diagnostics of the outflows, spanning a wide range of ionisation and excitation using (new) FUSE, HST, IUE and optical data. Analysis of the far-UV time-series of RW Sex reveals the wind to be highly variable but generally confined to between ~ -1000 and ~ 0 km/s for all ionisation states; no evidence of the wind at red-shifted velocities is found. This wind is modulated on the orbital period of the system and it is argued that the observed variability is due to changes in the blue-shifted absorption rather than a variable velocity emission. The Balmer profiles observed in the optical time-series of V592 Cas were found to be characterised by three components: a broad, shallow absorption trough, a narrow central emission and a blue-shifted absorption from the disc wind. The wind is also found to be modulated on the systems orbital period, although this modulation is slightly out of phase with the Balmer emission radial velocities. The wind of BZ Cam was found to behave very differently to that of RW Sex and V592 Cas. At times, it was seen (in the Balmer lines and some of the He I lines) to be extremely strong and variable but at other times is was seemingly not present; there was no evidence to suggest that it is modulated on the orbital or any other period. This study is an immense source of data on CV disc winds and importantly tries to parameterise three nova-like CVs to understand the similarities and differences between them and their winds.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available