Use this URL to cite or link to this record in EThOS:
Title: The properties and performance of high strength silica fume concrete
Author: Claisse, Peter Arnold
ISNI:       0000 0001 3551 8959
Awarding Body: University of Leeds
Current Institution: University of Leeds
Date of Award: 1988
Availability of Full Text:
Access from EThOS:
Access from Institution:
Silicafume (SF) has been used as a partial replacement for cement in concrete and experiments have been carried out to measure the durability of the mixes. The SF mixes were made with 20% SF replacement of cement and waterlcement (wlc) ratios of 0.3 and 0.46. Three different curing conditions were used to simulate different site conditions and tests were carried out at 3,28 and 90 days after casting. The following properties were measuredfor the two SF mixes and the two control (OPC) mixes for each of the ages and curing conditions: corrosion rate of embedded steel by linear polarisation, electrical resistivity, carbonation depth, water vapour permeability, chloride permeability, oxygen permeability and porosity from helium and mercury intrusion. Samples were also investigated by thermogravimetric analysis. The resulting data matrix was analysed by using the method of analysis of variance to quantify the effect of the SF on the properties tested and their sensitivity to age and curing. It was also analysed by multiple regression to identify major effects of one property on another. It was concluded that SF will reduce the corrosion rate and that the major contributing factor is the substantial increase in resistivity that the SF causes. This increase in resistivity was found to be highly sensitive to cold curing in the short term but this effect was not permanent. The cause of the increase in resistivity is believed to be the depletion of calcium hydroxide which is caused by the pozzolanic activity of the SF. The analysis also indicated that the SF reduces the porosity in the .01-.15)1m size range and that this has a major influence on the durability.
Supervisor: Cabrera, J. G. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available