Use this URL to cite or link to this record in EThOS:
Title: Catalytic membrane reactors for synthesis gas production from natural gas via partial oxidation
Author: Olsen, Susanne Kelly
ISNI:       0000 0001 3458 4954
Awarding Body: Robert Gordon University
Current Institution: Robert Gordon University
Date of Award: 2004
Availability of Full Text:
Access from EThOS:
Access from Institution:
Natural gas obtained during the extraction of liquid hydrocarbons is often undesired due to the lack of infrastructure to transport the natural gas to an onshore location. As a result the natural gas is often flared causing economic waste and environmental concern. It would therefore be desirable to either convert the natural gas into some other substance which can be transported easily, or transport the natural gas in a liquid state. In that way, new field development will be more financially viable through the use of the extensive infrastructure and technology already in place in the offshore industry for transporting liquid hydrocarbons. It is considered that one feasible way of utilising offshore produced natural gas, is to convert it into synthetic gas (syngas) which can in turn be used to produce gases and fluids such as methanol, ammonia or a synthetic crude oil that can be readily pumped through the same pipelines as the produced oil. For the production of synthetic gas, membrane technology presents an attractive advantage improving conversion efficiency by operating as catalyst support, which then also increases the catalyst dispersion, resulting in optimal catalyst load and complete consumption of oxygen and methane in the partial oxidation. In the present investigation, an enhanced catalyst-dispersed ceramic membrane for low-cost synthesis gas production suitable for gas-to-liquids has been prepared, characterised and tested in a self-designed membrane reactor. The effect of temperature and feed flow rates has been studied and a kinetic model has been developed. In the novel membrane reactor, an active porous layer is located on both sides facing the oxygen and methane containing gas, adjacent is a second active porous layer and is supported by layers with increasing pore radii. Here the active porous layer on the bore side enhances the reaction between permeated oxygen and fuel species. In this study, it has also been demonstrated that the oxygen is activated prior to contacting the methane inside the membrane. This often results in 100% oxygen conversion, CO selectivity higher than 96% and syngas ratio (1-1/2 C O) of 2.2 to 1.8. Another advantage of the developed membrane system is that it can be used in high temperatures (> 1273.15K) and high pressure (80bars) processes with no variation on the flow rates, due to the mechanical strength of the ceramic support used.
Supervisor: Gobina, Edward ; Bradley, Bob ; Mill, Helen Sponsor: Overseas Research Award
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available