Use this URL to cite or link to this record in EThOS:
Title: Global retrievals of upper-tropospheric phosphine from the Cassini/CIRS Jupiter encounter
Author: Parrish, Paul David
ISNI:       0000 0001 3467 4220
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2004
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
On December 30th 2000, the Cassini-Huygens spacecraft reached the perijove milestone in its continuing journey to the Saturnian system. During an extended six-month encounter, the Composite Infrared Spectrometer (CIRS) returned spectra of the Jovian atmosphere, rings and satellites from 10 to 1400 cm^-1 (1000 to 7 µm) at a programmable spectral resolution of 0.5 to 15 cm^-1. The improved spectral resolution of CIRS over previous infrared instrument-missions to Jupiter, the extended spectral range and higher signal-to-noise performance provide significant advantages over previous data-sets. Both optimal-estimation retrieval and radiance-differencing are used to investigate the global variation of upper-tropospheric temperature, ammonia, phosphine and cloud opacity between ± 60˚ latitude. The analysis methods are shown to successfully reproduce Jovian conditions with results consistent with previous investigations. The composition results in particular are well characterised and suggest an important role played by mixing and transport within the upper-troposphere. Interpretation and validation of the retrieved results is conducted via the construction of a simple dynamic model incorporating transport, diffusion and (photo)chemistry.
Supervisor: Irwin, Patrick G. J. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Atmospheric,Oceanic,and Planetary physics ; Jupiter ; Cassini-Huygens ; atmospheric chemistry ; atmospheric structure ; atmospheric dynamics ; infrared observations ; outer planet atmospheres ; phosphine